Combinatorial Optimization Problems for Which Almostevery Algorithm
نویسنده
چکیده
Consider a class of optimization problems for which the cardinality of the set of feasible solutions is m and the size of every feasible solution is N. We prove in a general probabilistic framework that the value of the optimal solution and the value of the worst solution are asymptotically almost surely (a.s.) the same provided log m = o(N) as N and m become large. This result implies that for such a class of combinatorial optimization problems almost every algorithm nds asymptotically optimal solution! The quadratic assignment problem, the location problem on graphs, and a pattern matching problem fall into this class.
منابع مشابه
Development of a Genetic Algorithm for Advertising Time Allocation Problems
Commercial advertising is the main source of income for TV channels and allocation of advertising time slots for maximizing broadcasting revenues is the major problem faced by TV channel planners. In this paper, the problem of scheduling advertisements on prime-time of a TV channel is considered. The problem is formulated as a multi-unit combinatorial auction based mathematical model. This is a...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملSelecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction
In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994